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In this paper, we present a generalization of the classical Korovkin theorem on
positive linear operators. We deduce some convergence results for linear operators
defined on C k[0, 1], that preserve some cones of functions related to shape proper-
ties. Finally, we show some examples. � 1998 Academic Press

1. INTRODUCTION AND NOTATIONS

The well-known result of Korovkin [4] states that for a sequence of
positive linear operators [Kn]n�1 , such that Kn f converges uniformly to f
in the particular cases f (t)=1, f (t)=t, and f (t)=t2, then it also converges
for every continuous real function f. The set [1, t, t2] is called a Korovkin
set. This result was a starting point for the development of a related theory.
Since then many papers have appeared studying qualitative and quan-
titative Korovkin-type results for sequences of operators defined in many
different spaces.
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On the other hand, interest in conservative approximation has increased.
In this field the problem is to assign to each function another one
belonging to a more reduced set, in such a way that if the function to be
approximated verifies some shape properties then the approximating func-
tion also satisfies these properties. If the process is linear and positive, then
Korovkin theorem and their first extensions give simple and nice methods
to show the convergence. But if the process is not positive, then the study
is more difficult, and these extensions usually do not give in practice
suitable conditions for convergence.

In this direction, we state in advance the following propositions which,
although they are very particular cases of the results we are proving in this
paper, they help to understand our goal with this work. These results will
extend in many aspects the mentioned Korovkin theorem.

In the sequel, we shall consider the terms positive, increasing, concave,
and convex in a non-strict sense. Moreover, we use the notation Ck[0, 1],
k�0, for the space of all real-valued and k-times continuously differen-
tiable functions on [0,1] endowed with the sup-norm & }&, D j for the j th
differential operator, and Pk for the space of functions spanned by
[e0 , e1 , ..., ek], where ei (x)=xi.

Proposition 1. Let [Kn]n�1 , Kn : C2[0, 1] � C2[0, 1], be a sequence
of linear operators that map positive and convex functions onto positive func-
tions.

If &Knej&ej& � 0 as n � � for j=0, 1, 2, then

&Kn f &f & � 0 as n � � for all f # C2[0, 1].

Remark. An analogous result cannot be stated for sequences of
operators defined on C2[0, 1] that map positive and concave functions
onto positive functions. To see this, it is sufficient to consider a polynomial
operator K : C2[0, 1] � P3 defined in such a way that if f # C 2[0, 1]
then D2(Kf )(x)=D2f (0)+(D2f (1)&D2f (0)) x for x # [0, 1], Kf (0)= f (0),
and Kf (1)= f (1). The constant sequence of linear operators [Kn]n�1 ,
Kn=K \n�1, holds the space P3 fixed and maps positive and concave
functions onto positive functions but the operators are polynomial.

Proposition 2. Let [Kn]n�1 , Kn : C2[0, 1] � C2[0, 1], be a sequence
of linear operators that map positive and concave functions onto concave
functions.

If &D2(Knej)&D2ej & � 0 as n � � for j=0, 1, 2, 3, 4, then

&D2(Kn f )&D2f & � 0 as n � � for all f # C2[0, 1].
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Proposition 3. Let [Kn]n�1 , Kn : C1[0, 1] � C1[0, 1], be a sequence
of linear operators that map positive and increasing functions onto increasing
functions.

If &D(Knej)&Dej& � 0 as n � � for j=0, 1, 2, 3, then

&D(Kn f )&Df & � 0 as n � � for all f # C1[0, 1].

Here is an outline of the rest of the paper: in Section 2 we show general
criteria to obtain results similar to previous ones for sequences of operators
that preserve shape properties. These results, that will be proved in Sec-
tion 4 together with some corollaries, provided the key idea to state the
main theorem of this paper that appears in Section 3. Finally, in Section 5,
we make use of that theorem to show the convergence of two concrete
sequences of operators and present a particular Korovkin-type theorem.

2. CONSERVATIVE APPROXIMATION IN Ck[0, 1]

A set of functions C is called a cone if for every f # C and :�0, :f # C.
In this section we define two different types of cones related to shape
properties in the space Ck[0, 1] and we state two theorems for them.

Let _=[_i] i�0 be a sequence with _i # [&1, 0, 1] and let h, k be two
integers with 0�h<k and _h_k {0. We denote

Ch, k(_)=[ f # Ck[0, 1] : _i Dif �0, h�i�k].

Let 1=[i : h�i<k, _i {0, _i+1=0 and _i _i+2 {&1].
If 1=< then we call Ch, k(_) a cone of type I.
If 1{< then we call Ch, k(_) a cone of type II.
We denote _[ j]=[_[ j]

i ] i�0 with _[ j]
i =0 for i{ j and _[ j]

j =_j .

Theorem 1. Let Ch, k(_) be a cone of type I or II and let [Kn]n�1 ,
Kn : Ck[0, 1] � Ck[0, 1], be a sequence of linear operators.

If Kn(Ch, k(_))/Ch, k(_[k]) and &Dk(Kn ej)&Dkej& � 0 as n � � for
every j=h, ..., k+2, then

&Dk(Kn f )&Dkf & � 0 as n � � for all f # C k[0, 1].

Theorem 2. Let Ch, k(_) be a cone of type II, let r # 1, and let [Kn]n�1 ,
Kn : Ck[0, 1] � Ck[0, 1] be a sequence of linear operators.

If Kn(Ch, k(_))/Ch, k(_[r]) and &Dr(Kne j)&Drej& � 0 as n � � for every
j=h, ..., k, then

&Dr(Kn f )&Drf & � 0 as n � � for all f # Ck[0, 1].
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Note that Proposition 1 is a particular case of Theorem 2 taking h=0,
k=2, and _=[1, 0, 1, ...]. Also, Propositions 2 and 3 are particular cases
of Theorem 1 taking, respectively, h=0, k=2, _=[1, 0, &1, ...] and h=0,
k=1, _=[1, 1, ...].

Some results in this direction have appeared in previous papers: in [1],
Altomare and Rasa, by means of envelope techniques, consider the case
_=[1, ..., 1, 0, 0, ...]; in [2], Brosowski, using the Dedekind-completion of
a partially ordered vector space, considers the case _=[1, 1, 0, 0, ...]; and
in [3], Knoop and Pottinger work with the hypothesis _i # [0, 1].

3. AN EXTENSION OF KOROVKIN THEOREM

In this section we state a theorem that extends the previous results in the
following aspects: the domain of the operators, the cones of functions, the
role that played the D j operator in Section 2, and consequently the sub-
spaces in which the Korovkin sets must be located.

Let X be a compact subset of Rm, RX the space of all real-valued func-
tions defined on X, and C(X)/RX the subspace of all continuous func-
tions. Let B/RX, let A be a subspace of C(X ) with A�B, and let L,
L : B � RX, be a linear operator satisfying L(A)/C(X ).

Theorem 3. Let P=[ f # B : Lf �0] and let C be a cone of A. Let V be
a subspace of A satisfying the following properties:

(v1) There exists u # V such that Lu(x)=1 for x # X.

(v2) For every point z # X, there exists .z # V & C such that

(a) L.z(z)=0<L.z(x) \x # X"[z],

(b) \f # A, _:=:( f )>0�;�: O ;.z+ f # C.

Let [Kn]n�1 , Kn : A � B, be a sequence of linear operators satisfying the
following properties:

(k1) Kn(P & C)/P for n�1.

(k2) For every f # V, L(Kn f ) converges uniformly to Lf as n � �.

Under these conditions, for every f # A, L(Kn f ) converges uniformly to Lf
as n � �.

Proof. Let f be any function of A. Due to the continuity of Lf and the
compactness of X, there exists a constant M>0 such that

&M<Lf (x)&Lf ( y)<M \x, y # X. (3.1)

147QUALITATIVE KOROVKIN-TYPE RESULTS



File: DISTL2 318205 . By:CV . Date:26:06:98 . Time:13:36 LOP8M. V8.B. Page 01:01
Codes: 1979 Signs: 917 . Length: 45 pic 0 pts, 190 mm

Furthermore, if a point z # X and a number =>0 are fixed, then there
exists $=$(z)>0 such that if x # B(z, $)=[x # X : |z&x|<$] then

&
=
3

<Lf (x)&Lf (z)<
=
3

. (3.2)

According to assumption (v2), there is a function .z that verifies (a) and
(b). Let M$ be the minimum value of the function L.z on X"B(z, $).

By using Eq. (3.1) and Eq. (3.2), it is verified that

&
=
3

&L.z(x)
M;
M$

<Lf (x)&Lf (z)<
=
3

+L.z(x)
M;
M$

\x # X, \;>1.

(3.3)

According to assumption (b), by taking a sufficiently large ;, we have,
using (v1), that

M;
M$

.z+
=
3

u+ f&Lf (z) u # C

and

M;
M$

.z+
=
3

u& f+Lf (z) u # C.

But, using Eq. (3.3), these functions belong to P as well. Then, from
assumption (k1), for n�1, the image by Kn of these functions are functions
in P and it follows that

&
=
3

L(Knu)(x)&
M;
M$

L(Kn .z)(x)

�L(Kn f )(x)&Lf (z) L(Kn u)(x)

�
=
3

L(Knu)(x)+
M;
M$

L(Kn.z)(x) \x # X,

or equivalently

L(Kn f )(x)�Lf (z) L(Kn u)(x)+
=
3

L(Knu)(x)+
M;
M$

L(Kn.z)(x) \x # X
(3.4a)
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and

L(Kn f )(x)�&
=
3

L(Knu)(x)+Lf (z) L(Knu)(x)&
M;
M$

L(Kn.z)(x) \x # X.

(3.4b)

By using assumption (k2) and (v1), there exists a number N(=, z) such
that if n�N(=, z) then

&
=�9

=�3+|Lf (z)|
+1<L(Knu)(x)<

=�9
=�3+|Lf (z)|

+1 \x # X (3.5)

and

&
(=�9) M$

M;
+L.z(x)<L(Kn.z)(x)<

(=�9) M$

M;
+L.z(x) \x # X. (3.6)

Then, by using Eq. (3.4a), Eq. (3.5), and Eq. (3.6), if n�N(=, z) then

L(Kn f )(x)

<
|Lf (z)| (=�9)
=�3+|Lf (z)|

+Lf (z)+
(=�3)(=�9)

=�3+|Lf (z)|
+

=
3

+
M;
M$ \L.z(x)+

(=�9) M$

M; +
=

=
9

+Lf (z)+
=
3

+
=
9

+
M;
M$

L.z(x)

=
2=
9

+
=
3

+Lf (z)+
M;
M$

L.z(x) \x # X, (3.7a)

and by using Eq. (3.4b), Eq. (3.5), and Eq. (3.6), we have that if n�N(=, z)
then

L(Kn f )(x)

>&
(=�3)(=�9)

=�3+|Lf (z)|
&

=
3

&
|Lf (z)| (=�9)
=�3+|Lf (z)|

+Lf (z)

&
M;
M$ \L.z(x)+

(=�9) M$

M; +
=&

=
9

&
=
3

+Lf (z)&
=
9

&
M;
M$

L.z(x)

=&
2=
9

&
=
3

+Lf (z)&
M;
M$

L.z(x) \x # X. (3.7b)
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On the other hand, due to the continuity of L.z , there exists $z>0 with
$z<$=$(z) such that if x # B(z, $z) then

L.z(x)<
(=�9) M$

M;
. (3.8)

Consequently, using Eq. (3.7a), Eq. (3.7b), and Eq. (3.8), if x # B(z, $z)
and n�N(=, z) then

|L(Kn f )(x)&Lf (z)|<
2=
3

. (3.9)

In this way, by Eq. (3.2) and Eq. (3.9), we have proved that for all =>0
and z # X, we can find a positive integer N(=, z) and $z>0 such that if
n�N(=, z) and x # B(z, $z) then

|L(Kn f )(x)&Lf (x)|<=.

The family of open subsets of X, [B(z, $z): z # X] is an open covering
of X. As X is compact, there exists a finite subset J of X such that
[B(z, $z) : z # J] is a finite subcovering of X. Now, if we choose N=
max[N(=, z) : z # J], it easily follows the uniform convergence of the
sequence L(Kn f ). Indeed, for any point x # X, there exists z # J in such a
way that x # B(z, $z). Consequently if n>N, then |L(Kn f )(x)&Lf (x)|<=. K

4. APPLICATIONS AND REMARKS

In the sequel, we denote _( j)=[_ ( j)
i ] with _ ( j)

i =_i for i{ j and _ ( j)
j =0.

Recall that we denote _[ j]=[_[ j]
i ] with _[ j]

i =0 for i{ j and _[ j]
j =_j .

4.1. Proof of Theorem 1. We shall apply Theorem 3 as follows. Let L
be the operator _kDk, A=B=Ck[0, 1], C=Ch, k(_(k)), and V=(eh ,
eh+1 , ..., ek+2). Observe that P=Ch, k(_[k]) and P & C=Ch, k(_).

Besides, we define u=(1�k!) _kek and for every z # [0, 1] we define
.z # V such that Dk.z(x)=_k(x&z)2 for x # [0, 1] and successively
Di.z(0)=_i (1+;i) with ; i�&D i+1.z& for i=k&1, k&2, ..., h.

We see that the hypotheses of Theorem 3 are verified. Indeed, if
h�i�k&1 with _i {0, then _iDi.z(x)=_iD i.z(0)+_i �x

0 (Di+1.z)�
_i Di.z(0)&;i�1 for x # [0, 1]. Therefore .z # C and .z verifies assump-
tion (v2)(b). The rest of the hypotheses are easily checked. K
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4.2. Corollary of Theorem 1. Let the sequence [Kn]n�1 be as in
Theorem 1 and let Ch, k(_) be a cone of type I. If the sequence satisfies the
following properties:

(a) Kn(Ch, k(_))/Ch, k(_) for n�1,

(b) &Dk(Knej)&Dkej& � 0 as n � � for j=h, h+1, ..., k+2,

(c) Di (Knej) converges pointwise to D ie j as n � � for i=h, ..., k&1
and j=h, ..., k,

then

&Di (Kn f )&Dif & � 0 as n � � for all f # Ck[0, 1] and i=h, h+1, ..., k.

Proof. By using the theorem, we obtain that Dk(Kn f ) converges
uniformly to Dkf for every f # Ck[0, 1]. Now, we shall prove the con-
vergence of the lower order derivatives at certain points (we shall only use
(a) and (c)).

Let f # Ck[0, 1] and let r # (eh , ..., ek&1) and s # (eh , ..., ek) satisfying
the following properties:

(i) Dks=_k M with M=&Dkf &,

(ii) for i=h, ..., k&1, whenever _i {0,

if _i _i+1=1 then D ir(0)=Dif (0) and Dis(0)=0,

if _i _i+1=&1 then Dir(1)=Dif (1) and Dis(1)=0,

if _i+1=0 then for :=0, 1, Dir(:)=Dif (:) and Dis(:)=0.

We define w1=s+r& f and w2= f +s&r. It is verified that w1 , w2 #
Ch, k(_) because _k Dkw1 , _kDkw2�0 and by recurrence it follows that
_i Diw1 , _ iDiw2�0 for i=k&1, k&2, ..., h. Indeed, assume that _l Dlwt�0
for l�i+1 and t=1, 2, then,

if _i=0 we have obviously that _ iDiwt�0 for t=1, 2,

if _i _i+1 {0, calling :i=(1&_ i_ i+1)�2, we have that for t=1, 2.

_i Diwt(x)=_iDiwt(:i)+_i |
x

:i

Di+1wt=_i |
x

:i

Di+1wt�0 \x # [0, 1],

because if _i _i+1=1 then :i=0 and _iD i+1wt�0, and if _i _i+1=&1
then :i=1 and _i Di+1wt�0. Finally,

if _i+1=0 then _i Diwt�0 for t=1, 2 because they are concave func-
tions that vanish at the points 0 and 1. Indeed, _iDi+2wt=_i+2_i+2 _i

Di+2wt=&_ i+2Di+2�0 (Ch, k(_) is a cone of type I, so _i_i+2=&1),
and for :=0, 1,
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_i (Diw1)(:)=_ i (D is)(:)+_i (Dir)(:)&_i (Dif )(:)

=0+_ i (Dif )(:)&_i (Dif )(:)=0,

_i (Diw2)(:)=_ i (D if )(:)+_i (Dis)(:)&_i (Dir)(:)

=_i (Dif )(:)+0&_i (Dif )(:)=0.

By using assumption (a), we have that for n�1, _iDi (Knwt)�0 for
t=1, 2 and i=h, ..., k.

In consequence, whenever _i {0,

if _i _i+1 {0 then for :i=(1&_i_ i+1)�2 we obtain

_i Di (Knw1)(:i)=_i (D i (Kn s)(:i)+Di (Knr)(:i)&Di (Kn f )(:i))�0

and

_iDi (Knw2)(:i)=_i (D i (Kn f )(:i)+Di (Kns)(:i)&Di (Knr)(:i))�0.

Therefore _iDi (Kns)(:i)�_iDi (Kn f )(:i)&_iDi (Knr)(:i)�&_iDi (Kns)(:i),
from which, using assumption (c), (Dis)(:i)=0, and (Dir)(:i)=(D if )(:i),
it can be deduced that Di (Kn f )(:i) � Dif (:i). By analogy,

if _i+1=0 then Di (Kn f )(0) � D if (0) and Di (Kn f )(1) � Dif (1).

Now we show the uniform convergence of the lower order derivatives.
If _i _i+1{0, the uniform convergence of Di (Kn f ) is a direct consequence
of the uniform convergence of Di+1(Kn f ) and the convergence of D i (Kn f )
at a certain point. If _ i+1=0 we obtain the uniform convergence of
Di (Kn f ) and D i+1(Kn f ) using the uniform convergence of D i+2(Kn f ) and
the convergence of Di (Kn f ) at the points 0 and 1. K

Remark. In Theorem 1 and its Corollary the uniform convergence of
Di (Knej) to D ie j for i=h, ..., k and j=h, ..., k+1 is not a sufficient condi-
tion. To see this, a linear polynomial operator preserving the cone Ch, k(_)
(type I) and fixing ej for j=h, ..., k+1 can be constructed (see [5, 6]).

In fact, let K : Ck[0, 1] � Pk+1 be a linear operator such that

Dk(Kf )(x)=Dkf (0)+(Dkf (1)&Dkf (0)) x for x # [0, 1],

and satisfying the following properties:

�� for i=h, ..., k&1, whenever _i {0,

if _i+1=0 then Di (Kf )(0)=Dif (0) and Di (Kf )(1)=Dif (1),

if _i _i+1 {0 then Di (Kf )(:i)=Dif (: i), with : i=(1&_ i_i+1)�2,

�� if h>0 then for i=h&1, ..., 0, Di (Kf )(0)=Dif (0).
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The constant sequence of linear operators [Kn]n�1 , Kn=K \n�1,
preserves the cone Ch, k(_) and holds the space Pk+1 fixed but the
operators are polynomial.

4.3. Proof of Theorem 2. It is again a direct consequence of Theorem 3.
By linearity, it is sufficient to consider _r=1 (then _r+2=1 or 0).
Now, let L be the operator Dr, A=B=C k[0, 1], C=Ch, k(_(r)), and V=
(eh , ..., ek) . In this way P=Ch, k(_[r]) and P & C=Ch, k(_).

Besides, we define u=(1�r!) er and for every z # [0, 1] we define .z # V
such that Dk.z(x)=_k for x # [0, 1] and if k>r+3, take successively
Di.z(0)=_i (1+;i) with ; i�&Di+1.z& for i=k&1, k&2, ..., r+3.
Besides, Dr+2.z(0)=1+;r+2 with ;r+2�&Dr+3.z&. In this way,
Dr+2.z�1 and Dr.z will be a strictly convex function that can be chosen
in such a way that Dr.z(z)=0<Dr.z(x) for x # [0, 1]"[z] (to do this,
take a function g such that Dg=Dr+1.z and choose Dr.z(x)= g(x)&
g(z)&Dr+1.z(z)(x&z) for x # [0, 1]). Finally, if r>h we define
Di.z(0)=_i (1+;i) with ; i�&D i+1.z& for i=r&1, r&2, ..., h.

We have that .z # C and that .z verifies assumption (v2)(b) of
Theorem 3 because _i Di.z�1 for h�i�k such that i{r and _i {0. The
rest of the hypotheses of this theorem are again easily checked. K

4.4. Corollary of Theorem 2. Let the sequence [Kn]n�1 and the cone
Ch, k(_) be as in Theorem 2 and let l=min[1].

If h<l and the sequence satisfies the following properties:

(a) Kn(Ch, k(_))/Ch, k(_) for n�1,

(b) &Dl (Knej)&Dle j& � 0 as n � � for j=h, h+1, ..., k,

(c) Di (Knej) converges pointwise to Diej as n � � for i=h, ..., l&1
and j=h, ..., k,

then

&Di (Kn f )&Dif & � 0 as n � � for all f # Ck[0, 1] and i=h, h+1, ..., l.

Proof. If Kn(Ch, k(_))/Ch, k(_) then Kn(Ch, k(_))/Ch, k(_(l )) and by the
theorem, we obtain that Dl (Kn f ) converges uniformly to Dlf for all
f # Ck[0, 1].

Now it suffices to prove the convergence of the lower order derivatives
at certain points.

We define _*=[_i*] such that _i*=1 if _i=0 and l<i<k, and _ i*=_ i

otherwise. Ch, k(_*) is a cone of type I and Ch, k(_*)/Ch, k(_).
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As in the last corollary, we consider f # Ck[0, 1] and we define r #
(eh , ..., ek&1) and s # (eh , ..., ek) with the same conditions for Ch, k(_*). It
is verified that w1=s+r& f and w2= f+s&r belong to Ch, k(_*), so for
n�1, Kn w1 , Knw2 # Ch, k(_). By analogy, for i=h, ..., l&1 we obtain the
following results:

(i) if _i _i+1 {0 then Di (Kn f )(:i) � D if (:i) with :i=(1&_i _i+1)�2

(ii) if _i+1=0 then Di (Kn f )(0) � D if (0) and Di (Kn f )(1) � Dif (1).

Now again, the proof is ended with the convergence of the lower order
derivatives at certain points. K

Remark. In Theorem 2 and its Corollary the uniform convergence of
Di (Knej) to Diej for i=h, ..., l and j=h, ..., k&1 is not a sufficient condi-
tion. To see this, a linear polynomial operator preserving Ch, k(_) (type II)
and fixing ej for j=h, ..., k&1 can be constructed (see [5, 7]).

For example, if a natural number N is fixed, the classical Bernstein
operator, BN , in [0,1], represents a constant sequence of linear polynomial
operators that fix P1 and preserve the cone C0, 2(_) with _=[1, 0, 1, ...].

5. EXAMPLES

Next some examples show how we can use Theorem 3, firstly to state
different Korovkin-type results and secondly to prove the convergence of
some particular sequences of operators.

Example 1. Let X be the closure of a bounded domain of Rm, let 2
denote the Laplacian operator, and let pi (x)=xi for all x=(x1 , ..., xm) # X
and i=1, ..., m. Let [Kn]n�1 , Kn : C2(X) � RX, be a sequence of linear
operators satisfying that if f # C2(X) with f �0 and 2f �0, then Kn f �0.

In these conditions Kn f converges uniformly to f # C2(X ) as n � � if and
only if the uniform convergence is satisfied for the functions 1, p1 , ..., pm , and
p2

1+ } } } + p2
m .

Proof. The result is a direct consequence of Theorem 3. To see this, let
A=C2(x), B=RX, Lf = f, C=[ f # A : 2f �0], and V=(1, p1 , ..., pm ,
p2

1+ } } } + p2
m) . Besides, we define u(x)=1 and .z(x)=(x1&z1)2+ } } } +

(xm&zm)2 for all x # X with z=(z1 , ..., zm) and x=(x1 , ..., xm). K

Example 2 (Euler�Taylor Operators). Let N be a natural number
and let H=[ f # CN&1[0, 1] : _x0=0<x1< } } } <xm=1 such that f #
CN[xi , x i+1], i=0, ..., m&1].
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Let [Tn]n�1 , Tn : CN[0, 1] � H, be the sequence of operators defined by

Tn f (x)=

f (0)+xDf (0)+ } } } +
1

N!
xNDNf (0),

x # _0,
1
n&

\ :
N&1

s=0

1
s! \x&

i
n+

s

DsTn f \ i
n+++

1
N ! \x&

i
n+

N

DNf \ i
n+ ,

x # \ i
n

,
i+1

n & , i=1, ..., n&1.

Let J, J : H � R[0, 1], be the linear operator defined by

Jf (x)=
DNf&(x)+DNf+(x)

2
,

where DNf& and DNf+ denote respectively the left and right derivatives of
order N of f.

Then J(Tn f ) converges uniformly to DNf as n � � for all f # CN[0, 1].

Proof. Euler�Taylor operators are not positive but they verify that if
f # CN[0, 1], f �0, Df �0, ..., DN&1f �0, and DNf �0, then Tn f �0,
D(Tn f )�0, ..., DN&1(Tn f )�0, and J(Tn f )�0. On the other hand,
J verifies that J(CN[0, 1])/C[0, 1].

Now, the example follows if we apply Theorem 3 with A=CN[0, 1],
B=H, L=J, C=[ f # CN[0, 1] : f �0, Df �0, ..., DN&1f �0], V=(e0 ,
e1, ..., eN+2), u(x)=(1�N !) xN for x # [0, 1], and .z # V such that L.z(x)=
(x&z)2 and Di.z(x)>1 for x # [0, 1] and i=0, 1, ..., N&1. In this way,
we obtain the result using that Tnei=ei for i=0, ..., N, |J(TneN+1)&
JeN+1)|�(N+1)!�n and |J(TneN+2)&JeN+2)|�(N+2)!�n.

Note that the uniform convergence of Di (Tn f ) to Dif for
i=0, 1, ..., N&1 is also obtained observing that Di (Tn f )(0)=Dif (0)
for i=0, 1, ..., N&1. K

Example 3. Let f [x0 , x1 , ..., xi] denote the divided difference of the
function f # C[0, 1] in the points x0 , x1 , ..., xi # [0, 1]. Let G=
[ f # C[0, 1] : _M>0 such that | f [x0 , x1 , x2]|�M \x0 , x1 , x2 # [0, 1]]
and let [Kn]n�1 , Kn : G � C[0, 1], be the sequence of linear operators
defined by
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Kn f (x)=

f (0)+ f _0,
1
n& x+ f _0,

1
n

,
2
n& x2,

x # _0,
1
n&

Kn f \ i
n++DKn f \ i

n+\x&
i
n++ f _ i

n
,
i+1

n
,
i+2

n &\x&
i
n+

2

,

x # \ i
n

,
i+1

n & , i=1, ..., n&3

Kn f \n&2
n ++DKn f \n&2

n +\x&
n&2

n +

+ f _n&2
n

,
n&1

n
, 1&\x&

n&2
n +

2

,

x # \n&2
n

, 1& .

Then Kn f converges uniformly to f as n � � for all f # G.

Proof. Kn are not positive operators (if f (t)=t(1&t) then Kn f (x)=
x(1&x)&(x�n)) but they verify that if f # G, f �0 and f [x0 , x1 , x2]�0
for all x0 , x1 , x2 # [0, 1], then Kn f �0.

We shall prove this statement through several steps. Firstly remember
the formula for the divided differences we are using here.

f _ i
n

,
i+1

n
,

i+2
n &

=
n2

2 \ f \i+2
n +&2 f \i+1

n ++ f \ i
n++ for i=0, 1, ..., n&2. (5.1)

(1) Let f be a function in G. Then

D(Kn f ) \ i
n+=n \ f \i+1

n +& f \ i
n++ for i=0, 1, ..., n&2. (5.2)

We shall prove these equalities by recurrence. Clearly D(Kn f )(0)=
n( f (1�n)& f (0)). Now, assuming D(Kn f )(i�n)=n( f ((i+1)�n)& f (i�n)) we
have
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D(Kn f ) \i+1
n +

=D(Kn f ) \ i
n++2

n2

2 \i+1
n

&
i
n+\ f \i+2

n +&2 f \i+1
n ++ f \ i

n++
=n \ f \i+1

n +& f \ i
n++ f \i+2

n +&2 f \i+1
n ++ f \ i

n++
=n \ f \i+2

n +& f \i+1
n ++ .

If in addition we suppose that f [x0 , x1 , x1]�0 for all x0 , x1 , x2 #
[0, 1], it is also obtained by recurrence that

Kn f \ i
n+� f \ i

n+ for i=0, 1, ..., n&2. (5.3)

Indeed, Kn f (0)= f (0) and if we assume that Kn f (i�n)� f (i�n), we have,
using (5.2), that

Kn f \i+1
n +

=Kn f \ i
n++\1

n+ D(Kn f ) \ i
n++

n2

2 \1
n+

2

\ f \i+2
n +

&2 f \i+1
n ++ f \ i

n++
=Kn f \ i

n++\1
n+ n \ f \i+1

n +& f \ i
n+++

n2

2 \1
n+

2

\f \i+2
n +

&2 f \i+1
n ++ f \ i

n++
=Kn f \ i

n+&
1
2

f \ i
n++

1
2

f \i+2
n +

� f \ i
n+&

1
2

f \ i
n++

1
2

f \i+2
n + ,

but 1
2 ( f (i�n) + f ((i + 2)�n)) � f ((i + 1)�n) because f [i�n, (i + 1)�n,

(i+2)�n]�0. This proves that Kn f ((i+1)�n)� f ((i+1)�n).

(2) Let f # G, f �0, and f [x0 , x1 , x2]�0 \x0 , x1 , x2 # [0, 1]. Let
x # [i�n, (i+1)�n] for any i=0, 1, ..., n&3, then Kn f (x)�0.
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Indeed, Eqs. (5.1), (5.2), and (5.3) yield

Kn f (x)� f \ i
n++n \ f \i+1

n +& f \ i
n++\x&

i
n+

+\x&
i
n+

2

f _ i
n

,
i+1

n
,
i+2

n & .

By using again the convexity condition on f we have that f [i�n, (i+1)�n,
(i + 2)�n] � 0 and f (i�n) + n( f ((i + 1)�n) & f (i�n))(x & i�n) � f (x). This
proves that Kn f (x)�0.

(3) Let f as in (2) and let x # [(n&2)�n, 1]. Then Kn f (x)�0.

Firstly, we can write Kn f (x)=K 1
n f (x)+K 2

n f (x) where

K 1
n f (x)=Kn f \n&2

n ++\x&
n&2

n + DKn f \n&2
n +

+
1
2 \x&

n&2
n +

2

f _n&2
n

,
n&1

n
, 1&

and

K 2
n f (x)=

1
2 \x&

n&2
n +

2

f _n&2
n

,
n&1

n
, 1& .

Now, by using (5.1) and (5.2),

K 1
n f (1)=Kn f \n&2

n ++2 \ f \n&1
n +& f \n&2

n ++
+\ f (1)&2 f \n&1

n ++ f \n&2
n ++

=Kn f \n&2
n ++ f (1)& f \n&2

n + .

On the other hand, D2(K 1
n f )(x)= f [(n&2)�n, (n&1)�n, 1]. Consequently,

if we define

g(x)=B2 f (x)+Kn f \n&2
n +& f \n&2

n + ,

where B2 : C[(n&2)�n, 1] � P2 is the classical Bernstein operator in
[(n&2)�n, 1] and if we use that g((n&2)�n)=K 1

n f ((n&2)�n), g(1)=
K1

n f (1), and D2g(x)=D2(K 1
n f )(x), it is obtained that K 1

n f (x)= g(x).
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Finally, g(x)=K 1
n f (x)�0 by the positivity of the Bernstein operator

and Eq. (5.3) for i=n&2. Besides, K 2
n f (x)�0 because f [(n&2)�n,

(n&1)�n, 1]�0. This proves that Kn f (x)=K 1
n f (x)+K 2

n f (x)�0.
Now, the proof of this example follows if we apply Theorem 3 with A=G,

B=C[0, 1], Lf = f, C=[ f # A : f [x0 , x1 , x2]�0 \x0 , x1 , x2 # [0, 1]],
V=(e0 , e1 , e2) , u(x)=1, and .z(x)=(x&z)2 for x # [0, 1]. Note that we
have already checked assumption (k1) of Theorem 3. Besides, assumption
(v2)(b) is verified because if f # G then its second order divided differences
are bounded. Finally Knei converges uniformly to ei for i=0, 1, 2. Indeed,
Kne0=e0 , Kn e1=e1 , and Kne2(x)=x�n+e2(x) \x # [0, 1] as it can be
easily proved by recurrence. K
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